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1 Introduction
Seemingly endless analytical resources are dedicated to several sports. One sport that is repeatedly neglected
is Olympic-style wrestling. For many reasons, wrestling has become less popular. Despite being one of the
original Olympic sports, it is constantly in consideration for being dropped from the Olympics altogether.
There are a few likely reasons for the decline in popularity. Wrestling can be boring to watch; high level-
wrestling often has low-scoring matches. Also, the rise of sensationalized alternatives (like WWE or mixed-
martial art events like the UFC) can pull fans away. This project will use data from Jordan Burroughs’
matches to assess what factors have led to high scoring matches, potentially indicating how wrestling could
have higher popularity.

Because wrestling is generally not a team sport, fans follow and support specific wrestlers. In the
United States, the arguably most popular wrestler is the 2012 Olympic gold medalist Jordan Burroughs. He
continues to perform at the highest level against some of the best wrestlers in the world. According to the
AP, “[Burroughs’] personality, electric wrestling style, and savvy use of social media has” made him “key to
wrestling’s popularity.” Burroughs is known for his aggressive double-leg take downs, physical stamina, and
high-scoring matches. He is undoubtedly vital to the popularity of wrestling in the United States.

This project is interested in a model of the points scored in Burroughs’ matches. A brief introduction to
the points of wrestling is given here, but for more details on points (and other rules) the West Virginia website
has a good introduction. Essentially, wrestling has top, bottom, and neutral positions. Points are scored by
transitioning to a more favorable position. Two points are awarded for going from neutral to top (takedown)
or bottom to top (reversal). One point is awarded for going from bottom to neutral (escape). Additionally,
two or three points are awarded for putting the opponent on their back for three to five seconds (near-fall). If
a wrestler plants the opponent’s shoulders on the mat (pin or “fall”), it is an automatic win. For simplicity,
pins are excluded from this analysis. A high scoring match means that there are more positional transitions,
which typically translates to a more entertaining match.

2 Data Description
Burroughs has wrestled at 74 kg (163 lbs). He has participated in the Olympics twice, winning gold in
2012 and only placing 5th in 2016, despite being ranked number 1 in the world. In the 2021 Olympic trials,
Burroughs lost to Kyle Dake, and so will not be participating in the Japan Olympics at all. Figure 1 shows
that the number of points scored by both Burroughs and his opponents have increased over time (probably
resulting in more exciting matches); however, the points scored by Burroughs seemed to peak in around 2014
and has been steadily declining since then. Figure 2 shows that the most common nationalities of Burroughs’
opponents are American, Russian, or Iranian. Figure 3 displays that the points scored by both Burroughs
and his opponents may be affected by the nationality of the opponent.

The data used in this project are obtained from Burroughs’ website. The response variables of this project
are the points scored by Burroughs as well as points scored by his opponents. The covariates considered
in the final model include the centered and scaled year (YEAR), an indicator for if the opponent is an
Olympian (IS OLYMPIAN), and indicators for the six most common nationalities of Burroughs’ opponents
(USA, RUS, JAP, IRA, UZB, or CUB), with “other” nationalities being the baseline.

3 Goals
The goal of this project is to model the points scored in Burroughs’ matches, with data from the last
decade. The points scored by opponents are correlated, so a bivariate-Poisson model is attractive. Karlis
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Figure 1: The number of points
scored by Burroughs and his op-
ponents over time.

Figure 2: Distribution of the na-
tionalities of Burroughs’ oppo-
nents (countries omitted).

Figure 3: Points scored by both
Burroughs and his opponents, by
nationality (countries omitted).

and Ntzoufras (2003) uses this model in a similar sports setting, for example. From these data, the covariates
listed above will be used to model the points scored.

This project employs a bivariate-Poisson model under both a Frequentist and a Bayesian paradigm. The
Frequentist method will leverage the flexible R package, bivpois, developed in Karlis et al. (2005). These
models estimate the correlation between points scored by Burroughs and points scored by his opponents
and how those points change over time. An effect of the nationality on the points scored is also considered.
Countries prioritize wrestling differently, and this affects how their top wrestlers score against Burroughs.

Promotional events pull top wrestlers from different countries to get exciting matches. One recent example
is the “2018 Beat the Street” event, where Burroughs faced the Italian wrestler, Frank Chamizo, in front of
a live, outdoor audience in NYC. Picking exciting opponents helps the sport of wrestling gain popularity.
This project will identify factors that might make these types of events more entertaining.

4 Frequentist Model
The Frequentist generalized linear model is the first approach used in this project. Additionally, this is
the approach used in model selection, and the Bayesian model is based on the covariates used in the final
Frequentist model.

4.1 Model Definition In this model, two response variables jointly follow a bivariate-Poisson model
with three rate parameters. Each of these rates has its own linear component with a log link function, as
shown below.

y1,i, y2,i ∼ Bivariate Poisson(λ1,i, λ2,i, λ3,i) (1)

log (λκ,i) = ηκ,i

ηκ,i = x′iβκ
κ ∈ {1, 2, 3} (2)

The bivariate-Poisson distribution’s probability density function is defined by the following:

fBP(y1, y2|λ1, λ2, λ3) = e−(λ1+λ2+λ3)
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Alternatively, this model could be considered as on three latent variables, G1i, G2i, and G3i. In the
bivariate-Poisson model, each of these three latent variables follows a univariate Poisson distribution. The
rates of these three latent variables are the same three rates as before. The two observed variables are
combinations of the latent variables (shown below).
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y1,i = G1,i +G3,i

y2,i = G2,i +G3,i

(4)

Gκ,i ∼ Poisson(λκ,i)

log (λκ,i) = ηκ,i

ηκ,i = x′iβκ

κ ∈ {1, 2, 3} (5)

This model then assumes that E(y1,i) = λ1,i + λ3,i and E(y2,i) = λ2,i + λ3,i.
The Frequentist modeling approach requires the EM algorithm for parameter estimation. The details

of this estimation procedure are beyond the scope of this project, but can be found in Karlis et al. (2005).
This work also established software in R that allows for such estimation (bivpois package). With minor
tweaks, this methodology was implemented for this project. Unfortunately, due to the use of the expectation-
maximization algorithm for parameter estimation, no error bounds are available for the Frequentist approach.

4.2 Model Diagnostics There are a few ways to measure the fit and predictive ability of the
Frequentist model. Here, RMSE on both y1 and y2 is used for prediction accuracy. The deviance (when
compared to other models) illustrates the fit of the model (the smaller the deviance, the better).

The RMSE of Burroughs’ points is 3.1 (about one takedown and one escape) and the RMSE of his
opponents’ points is 1.8 (about one takedown). The original standard deviation of the points scored is
slightly less for both wrestlers’ points (3.8 and 2.1 for Burroughs and his opponents, respectively). Thus,
the model does show improvement over a simple mean.

The deviance for this model is 930.2, which is both significantly better fit than a null model (p-value:
< .0001) and significantly worse than the saturated model (p-value: < .0001). Although this doesn’t tell
much about the fit of the model, but it does confirm that the model is a significant improvement over a naive
mean approach. Deviance is used in this project to perform forward selection on the possible covariates.

4.3 Variable Selection and Model Interpretation Deviance is a measure of model fit. In
this project, deviance is used to test if including an additional covariate would have a statistically significant
impact on the model fit. Deviance is a calculated by taking the difference of the log-likelihood of a particular
model and the deviance of a saturated model and multiplying by 2. A saturated model is one where the
expectation of yi is assumed to be yi, which means that the model has the best possible predictions for a
response: the response itself.

It has been shown that with large sample size m, the deviance approximately follows a χ2 distribution.
Let p be the number of parameters in β, then D∼̇χ2(m − p). If one model is nested inside another model,
the difference in the models’ deviances has also been shown, in the limit, to follow a χ2 distribution. As m
approaches infinity, D0 −D1 = ∆D∼̇χ2(p− q), if q is the number of parameters in the nested model and p
is the number of parameters in the more complicated model.

The forward selection procedure in this project appeals to deviance. The procedure starts with a simple
model that has only intercepts so that ηκ,i = βκ,0 for κ ∈ {1, 2, 3}. Starting with β1, for all possible variables,
columns are added to x1 and an additional corresponding element to be estimated in β1. The deviance of
each of these alternative models is calculated, as is the deviance of the model before considering an added
variable. The differences in deviance are compared to the corresponding χ2 distributions to obtain p-values
for each potentially added variable. These p-values test if the gain in model fit from adding the corresponding
variable is statistically significant. If the smallest p-value was less than .05, the corresponding variable was
then added to the model and another round of covariate considerations was made. If the smallest p-value
was larger than .05, then the forward selection procedure was terminated for β1. This same forward selection
procedure was then applied to β2 and then β3.

The final model on the latent variables, after this forward selection procedure, is as follows:
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Gκ,i ∼Poisson(λκ,i), ∀ κ ∈ {1, 2, 3} (6)

log (λ1,i) =β1,0 + β1,1YEAR + β1,2IS OLYMPIAN

+ β1,3USA + β1,4RUS + β1,5IRA

+ β1,6JAP + β1,7UZB + β1,8CUB

(7)

log (λ2,i) =β2,0 + β2,1YEAR + β2,2IS OLYMPIAN

+ β2,3USA + β2,4RUS + β2,5IRA

+ β2,6JAP + β2,7UZB + β2,8CUB

(8)

log (λ3,i) = β3,0 + β3,1YEAR (9)

4.4 Parameter Interpretation The effects for each λκ,i are interpreted in slightly different ways.
In all cases, exponentiation on the coefficient shows the multiplicative effect on the mean number of points
scored. Coefficients in β3 is the effect on points scored both by Burroughs and his opponent. So if there is
a large effect in β3, then that variables is associated with high points by both Burroughs and his opponent.
Coefficients in β1 can be interpreted the same way, but as effects on additional points scored by only
Burroughs. Coefficients in β2 are the same, but on additional points scored by only his opponent.

One useful property of the bivariate-Poisson distribution is that the covariance between the two variables
is defined by Cov(y1,i, y2,i) = Cov(G1,i+G3,i, G2,i+G3,i) = Var(G3,i) = λ3,i. Thus, if λ3,i = 0, then the two
variables y1,i and y2,i are independent. When λ3,i is large, then the points scored by Burroughs and scored
by his opponent are correlated. Notably, the addition of the λ3 covariance parameter led to a significant
improvement in fit.

5 Bayesian Model
The model structure of the Bayesian model is identical to that of the Frequentist model, with non-informative
prior distributions on all the coefficients of each βκ vector.

5.1 Model Definition This project used βκ,j ∼ N (0, 10000) as the priors; note that the priors are
then independent. The full Bayesian model structure is as follows:

y1,i, y2,i ∼ Bivariate Poisson(λ1,i, λ2,i, λ3,i)

log (λκ,i) = ηκ,i

ηκ,i = x′iβκ

βκ ∼N (0, 10000I)

κ ∈ {1, 2, 3} (10)

The Bayesian framework seems appropriate for this problem because it allows for credible intervals on
effects, where the Frequentist approach currently does not have that capability. Additionally, with wrestling
matches, we are typically interested in questions other than the individual distributions of points scored. The
posterior samples of this framework can easily get at many questions of Burroughs’ matches. Predictions
of the probability of Burroughs winning, the probability of total points being above a certain value, or the
distribution in difference in points scored would all be easily available.

5.2 Model Diagnostics A Bayesian framework has both sampling diagnostics as well as actual
model fit diagnostics. For sampling diagnostics, this project will consider trace plots and Gelman statistics
to check convergence and mixing. Autocorrelation plots and effective sample sizes are considered to see
effectively how many samples are obtained and how correlated the samples are. Figures 4 and 5 show these
sampling diagnostics for β1. The Gelman statistics should be close to 1, which is the case for all samples.
The trace plots show that the samples are mixing well, and have converged. The Autocorrelation (ACF)
plots should reveal nearly no autocorrelation beyond lag 0, which is the case here. The resulting effective
sample sizes are all greater > 9000.

The RMSE, just as in the Frequentist approach, is used here to measure predictive ability of the model.
The RMSE (using the Bayesian estimates under squared error loss) of points scored by Burroughs was 3.3
and the RMSE for points scored by his opponents was 1.9. This RMSE is slightly lower than that of the
Frequentist approach.
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Figure 4: Trace plots (and Gelman statistics) of pos-
terior samples for effects on Burroughs’ points.

Figure 5: ACF plots (and effective sample sizes) of
posterior samples for effects on Burroughs’ points.

5.3 Variable Selection and Model Interpretation Obtaining posterior samples in this
Bayesian model is relatively expensive. To achieve the observed diagnostics, the model was thinned such
that 1 in 90 samples were kept. Additionally, there was a burn in of 100000. Obtaining samples on a variety
of models was not as feasible as it was in the Frequentist approach; therefore, the final Frequentist model
was simply assumed for the Bayesian approach. The estimated parameters in the Bayesian model has the
same interpretation as in the Frequentist approach, which is explained in Section 4.4.

6 Results
This project is most interested in what has led to high-scoring matches throughout Burroughs’ career. After
identifying how the covariates affect points scored, a prediction will be made. The 2021 Olympic trials
occurred at the end of March. Due to performance in the 2019 World Championships, Burroughs only
competed in the best-of-3 finals of the tournament. He wrestled against Kyle Dake, losing 3-0 and 3-2; so
he will not be participating in the 2021 Olympic games in Japan. Predictions from the Frequentist and
Bayesian model will be made on the Kyle Dake match and compared to the observed results.

6.1 Model Insights The average fitted value for λ3 was .14 in the Frequentist model, which means
that the points scored by Burroughs and by his opponents are estimated to have relatively low covariance.
A deviance test revealed, however, that including the covariance term results in a significantly better fit.
The Bayesian model estimated a much higher covariance of 1.48, but on average estimated that λ2 was .003.
Both models confirm that points scored by Burroughs and by his opponents are correlated.

In Section 6.2, specific effects estimates will be reported and interpreted. Some general insights on this
model is that both Burroughs and his opponents have scored more points over time, Olympians tend to score
more (and Burroughs less), Americans, Russians, and Iranian opponents score more (and Burroughs less),
and Cubans score more (and Burroughs more).

6.2 Important Parameter Estimates The Frequentist model does not include standard error
on estimates, but the estimate are reported in Table 1. As explained in Section 4.4, these estimates show
the effect of each variable on the log mean number of points scored.

The Bayesian model led to similar predictions, but as stated in Section 6.1, it essentially estimated 0
for all λ2,is. The estimates for the specific effects have high variance and are extremely negative, so they
are not particularly interesting to report here. The estimated Bayesian effects under squared error loss, the
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Table 1: Estimated effects on points scored (Frequentist Model)

Parameter Effect on λ1 Effect on λ2 Effect on λ3
(Intercept) 1.90 -.12 -2.05

YEAR .24 .43 .20
IS OLYMPIAN -.22 .33 –

USA -.29 .35 –
RUS -.17 .68 –
IRA -.26 -.35 –
JAP -.09 -.01 –
UZB -.23 1.04 –
CUB .16 .46 –

Figure 6: Estimated Effects on log (λ1). Figure 7: Estimated Effects on log (λ3).

Bayesian credible intervals, and the Frequentist point estimates for the effects on λ1 and λ3 are shown in
Figures 6 and 7.

After accounting for the scale, the Frequentist model estimates that the mean points scored by Burroughs
increases by 8.76% per year. The Bayesian model estimates that the mean points increases by 7.52% per
year (95% CI: 4.77% to 10.34%). Other significant effects (according to the Bayesian model) on Burroughs
points are that an Olympian opponent decreases his mean points by 26.24% (95% CI: 9.24% to 40.91%, and
a Frequentist estimate of 20.00%), and American opponents decrease his mean points by 32.88% (95% CI:
18.75% to 44.98%, and a Frequentist estimate of 25.32%).

The Frequentist model has some interesting estimates for the effects on Burroughs’ opponents’ points.
The mean number of points is estimated to increase by 16.32% for each additional year. The mean number
of points scored by his opponents increases by an estimated 38.93% if the opponent is an Olympian. The
mean number of points for American opponents increases by 41.75%, for Russian opponents increases by
96.90%, for Iranian opponents decreases by 29.26%, for Uzbek opponents increases by 182.46%, and for
Cuban opponents increases by 58.96%.

Finally, the year also affects the joint rate on points scored by both wrestlers. According to the Bayesian
model, the mean points scored by both wrestlers is estimated to increase by 12.66% (95% CI: 9.10% to
16.37%, and a Frequentist estimate of 7.42%).

6.3 Predicting the Olympic Trials Match The final calculations of this project was prediction
for a 2021 match against American Olympian opponent, Kyle Dake. The predicted number of points scored
by Burroughs is 7.38 (95% CI: 2.00 to 13, with a Frequentist estimate of 7.08). The predicted number of
points scored by his opponent is 3.14 (95% CI: 0.00 to 7.00, with a Frequentist estimate of 4.89). The
predicted point difference (Burroughs - Opponent) is shown in Figure 8. The Bayesian model estimates that
Burroughs has a 7.30% probability of scoring fewer points than this type of opponent. He is estimated to
score 4.23 more points than his opponent (95% CI: −2.00 to 11.00, with a Frequentist estimate of 2.19). The
Bayesian model estimates that Burroughs had only a 7.3% probability of losing to this type of opponent.
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Figure 8: Predicted point difference in a match between Burroughs and an American Olympian in 2021.

7 Conclusion
This project lead to some interesting conclusions and results. The opponents that would lead to the highest
scoring matches (both by Burroughs and the Opponent) would be a Cuban, experienced, Olympian wrestler.
If wrestling organizations like Flo or USA Wrestling want more exciting matches (that include Burroughs),
they should give him opponents like this. Something fascinating is that Burroughs has done several specialty
matches against a wrestler who almost perfectly fits this description: Frank Chamizo. Chamizo is an Italian-
Cuban Olympian. He is labeled as Italian in this project, so he does not drive the effect of being Cuban,
which is positive for both Burroughs and his opponent. This indicates that Cuban-style wrestlers lead to
higher scoring matches. Chamizo’s specialty matches against Burroughs have been 6-5, 10-10, and 4-4 in
2018, 9-2 in 2019, and 2-3 in 2021. These have turned out to be highly popular matches.

7.1 Future Work Many elements of this project lead to other questions or suggest possible improve-
ments. One change could be to transition away from the Frequentist model and make a few improvements
on the Bayesian model. This model could have hierarchical effects of country, and include many more
nationalities. Variable selection through a Bayesian approach might also help arrive at a better model.

Another expansion of this project could be to include more wrestling data, and model characteristics of
both wrestlers. Additionally, pins are not included in this model at all. It may be interesting to model the
probability of pins, as pins can be the most exciting matches to watch.

7.2 Strengths and Weaknesses The mean fitted covariance was 1.48 (Frequentist mean covari-
ance of 0.13). A strength of this model is that it accounts for this covariance, where an independent
bivariate-Poisson model wouldn’t. A weakness of this approach is that it is less interpretable and the Fre-
quentist model does not provide standard error for covariates.
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